

ACTUADORES LINEALES

SERIE TMA / ILA

TMA-ILA

SERIE TMA

CAP. DE CARGA VEL. LINEAL ≤ 20.000 Kg ≤ 40 mm/seg

SERIE ILA

CAP. DE CARGA	VEL. LINEAL
≤ 20.000 Kg	≤ 200 mm/seg

Certificado de Aprobación

Certificamos que el Sistema de Gestión de :

Comercial de Transmisiones, S.A. (COTRANSA)

P.I. Trobika, C/Landeta, 4, 48100 Munguia, Vizcaya, España

ha sido aprobado por Lloyd's Register de acuerdo con las siguientes normas:

ISO 9001:2015

Números de Aprobación: ISO 9001 - 0034729

El alcance de esta aprobación es aplicable a:

Gestión de ventas, soporte técnico, ensamblaje y reparación de: reductores, motoreductores y variadores de velocidad, mesas de giro intermitente, gatos mecánicos y actuadores lineales, limitadores de par y elementos de transmisión mecánica, unidades lineales, estructuras de aluminio, rodillos motorizados y transportadores.

Paul Graaf

Area Operations Manager, Europe

Emitido por: Lloyd's Register Quality Assurance España, S.L.U.

en nombre de: Lloyd's Register Quality Assurance Limited

Lloyd's Register Group Limited, its affiliates and subsidiaries, including Lloyd's Register Quality Assurance Limited (LRQA), and their respective officers, employees or agents are, individually and collectively, referred to in this clause as "Lloyd's Register". Lloyd's Register assumes no responsibility and shall not be liable to any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that confirmation. Issued by: Lloyd's Register Quality Assurance España, S.L.U., ED,C/ Princesa, 29, 1º 28008 Madrid Spain for and on behalf of: Lloyd's Register Quality Assurance Limited, 1 Trinity Park, Bickenhill Lane, Birmingham B37 7ES, United Kingdom

ÍNDICE

_		, _
N IO	\neg	PÁG
1/1/	1 1 -	PAG
	-	

1 INTRODUCCIÓN A LOS ACTUADORES LINEALES	3
2 GAMA DE ACTUADORES	4
3 CARACTERÍSTICAS CONSTRUCTIVAS	6
4 CARACTERÍSTICAS TÉCNICAS	8
5 SELECCIÓN DEL ACTUADOR	12
6 RESISTENCIA AL PANDEO BAJO CARGA DE EMPUJE - DIAGRAMAS DE EULER II	15
7 CODIFICACIÓN	18
9 ÍNDICE DE IRREVERSIBILIDAD	19
ACTUADORES LINEALES TMA	
10 PROGRAMA DE FABRICACIÓN serie TMA	21
11 DIMENSIONES serie TMA (Actuador sin reductor de entrada)	23
12 POSICIÓN DE MONTAJE DEL MOTORREDUCTOR _ SERIE TMA	25
13 ACCESORIOS TMA	29
ACTUADORES LINEALES SERIE ILA	
14 DIMENSIONES serie ILA	33
15 - ACCESORIOS	35

1.- INTRODUCCIÓN A LOS ACTUADORES LINEALES

Los actuadores lineales electromecánicos son cilindros mecánicos motorizados que transforman el movimiento de giro de un motor en un desplazamiento lineal del vástago.

La definición de actuador lleva implícita la garantía de un movimiento totalmente controlado en velocidad y posicionamiento, en función de la configuración mecánica y del accionamiento de entrada. Están diseñados y construidos para aplicarlos en las situaciones más exigentes desde el punto de vista de:

- ciclo de trabajo
- · condiciones ambientales
- · cargas aplicadas
- velocidad lineal

Pueden trabajar en tiro o por empuje, esto es, a tracción o compresión.

Según su configuración pueden ser:

- Irreversibles bajo carga, capaces de sostener cargas aplicadas en pausa, sin variar la posición cuando el motor está parado.
- Reversibles bajo carga, en este caso para sostener la carga en pausa sin variar la posición, el motor debe tener freno.

Se caracterizan por su elevada regularidad en funcionamiento con carga o sin ella y por sus bajos niveles de ruido. El movimiento se efectúa a velocidad uniforme.

Su aplicación es tan sencilla como crear un accionamiento de tiro o empuje con un simple mando de marcha / paro hasta donde se desee. Mediante accesorios como encoder o potenciómetro para el control de la posición, motores con dinamo tacometrica y accionamientos servocontrolados llegamos a conseguir un eje totalmente controlado.

La instalación es sencilla y económica requiriendo solamente un tope anterior y posterior como un cilindro normal.

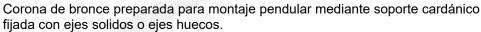
Pueden sustituir a cilindros neumáticos e hidráulicos por diversos motivos:

- Uniformidad en movimientos a tracción o compresión.
- Precisión de posicionamiento en la parada.
- Mantenimiento de la posición bajo carga.
- Consumo eléctrico solamente durante la operación.
- Posibilidad de ser instalados en ambientes agresivos solo necesita cables eléctricos para el control.
- Mayor seguridad en presencia de cargas suspendidas (posibilidad de seguridad mecánica intrínseca)
- Posibilidad de uso en ambientes con temperaturas muy bajas, sin problemas de congelación.
- Posibilidad de uso en ambientes con temperaturas muy altas, sin peligro de incendio.

El campo de utilización de los actuadores lineales es amplísimo. Son utilizados donde la aplicación industrial requiere gran seguridad o control del movimiento lineal de posicionamiento, deslizamiento y elevación.

La amplia gama de tamaños, carreras, tipos de motor, velocidades lineales, así como de accesorios disponibles, nos facilita su adaptación a nuevas instalaciones, sustituyendo adecuadamente por razones de economía y de prestaciones finales, los complicados sistemas hidráulicos o neumáticos.

2.- GAMA DE ACTUADORES


Serie TMA:

La gama de actuadores de la serie TMA se diferencia fundamentalmente por la transmisión del accionamiento:

- Accionamiento de entrada: reductor de sin fin corona.
- Accionamiento lineal: husillo trapecial de una entrada.

SERIE TMA
TMA 15
TMA 25
TMA 50
TMA 100
TMA 150
TMA 200

Velocidad lineal: (0,12 ... 40) mm/s Carga max.: (2,6 ... 200) KN Carrera hasta: 1.500 mm.

El eje de entrada del motor se encuentra a 90° con respecto al eje del actuador.

Posibilidades de:

Entrada:

- Accesorio para motor eléctrico IEC
- Eje solido

Motor eléctrico:

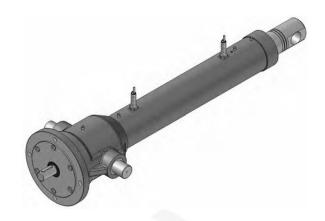
C.A. trifásico

Finales de carrera:

- Interruptores de proximidad, con posición fija en el tubo exterior.
- Interruptores eléctricos operados por levas, con posición fija en el tubo exterior

Amplia gama de accesorios:

Es posible conectar sistemas de accionamiento que consisten en dos o más actuadores cuyos ejes de entrada estén conectados mecánicamente por ejes de transmisión.


Serie ILA:

La gama de actuadores de la serie ILA:

• Accionamiento lineal: Husillo trapecial de 1 o más entradas (serie ILA.A).

• Accionamiento lineal: Husillo a bolas (serie ILA.B).

ACCIONAMIENTO LINEAL						
Serie ILA.A Husillo trapecial	Serie ILA.B Husillo a bolas					
ILA 15 A	ILA 15 B					
ILA 25 A	ILA 25 B					
ILA 50 A	ILA 50 B					
ILA 100 A	ILA 100 B					
ILA 150 A	ILA 150 B					
ILA 200 A	ILA 200 B					

Carga max.: (15 ... 200) KN Carrera hasta: 1.500 mm.

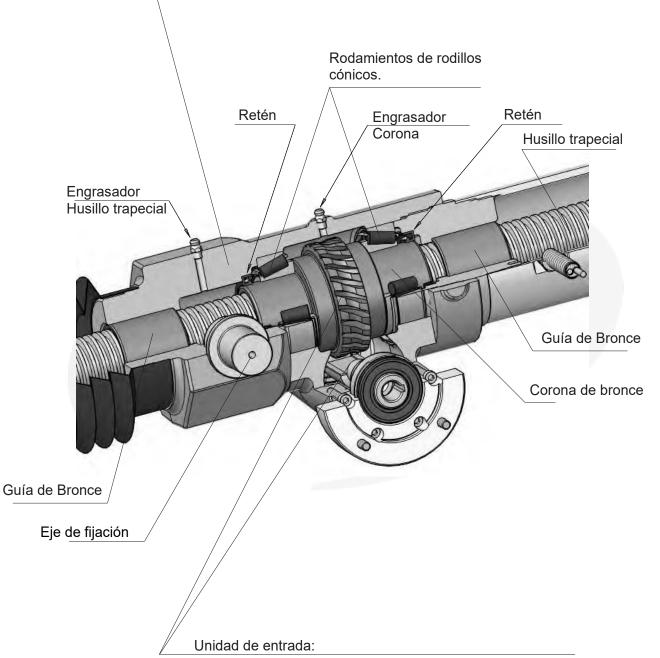
Actuadores de montaje en línea con carcasa con pasadores.

Entradas: Eje y brida como accesorios de accionamientos de entrada.

Finales de carrera:

• Interruptor de proximidad, en posición fija en el tubo exterior.

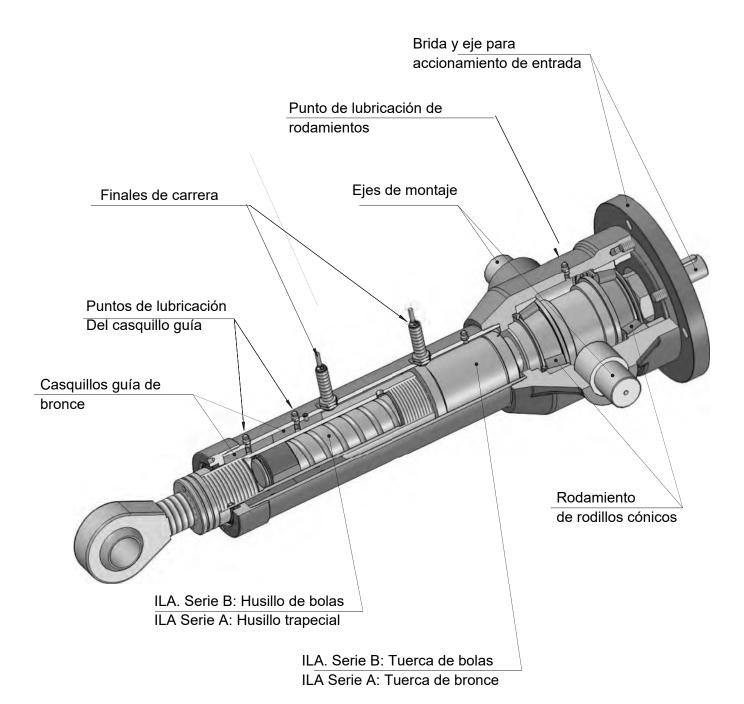
Amplia gama de accesorios.


3.- CARACTERÍSTICAS CONSTRUCTIVAS

Serie TMA

Carcasa:

Diseñado y fabricado en forma de monobloque para lograr un cuerpo compacto capaz de soportar cargas axiales pesadas y tener una alta rigidez.


Material: Hierro fundido EN-GJL-250 (UNI EN 1561)

Sin fin corona de precisión. Diseño geométrico para alta eficacia, perfil envolvente ZI(UNI4760 parte4), juego reducido. Eje sin fin en acero endurecido 20 MnCr5 (UNI 10084), con rosca y ejes de entrada rectificados. Corona de bronce EN1982-CuSm12-C.

SERIE ILA

4.- CARACTERÍSTICAS TÉCNICAS

La tabla de características técnicas nos aporta para cada serie de actuadores, los principales datos de identificación, constructivos y de prestaciones. La consulta a esta tabla se recomienda cuando se necesitan con detalle las principales diferencias constructivas y de prestaciones de los diferentes tamaños de una misma serie. Los datos aportados en la tabla son de especial interés cuando se quiere utilizar los actuadores lineales para accionamientos con control de la posición y la velocidad.

CARACTERÍSTICAS GENERALES

- Diámetro de tubo de empuje: diámetro externo del vástago de empuje.
- Diámetro del tubo de protección: diámetro externo del tubo exterior.
- Brida de motor: dimensiones de la brida normalizada motor IEC UNELMEC B14 B5.
- Carga dinámica: máxima carga que el actuador es capaz de accionar. La carga máxima se obtiene en base a la velocidad, que está en función de la relación interna (RL). Al aumentar la velocidad la capacidad de carga se reduce, debido a que el actuador tiene el mismo motor con potencia instalada constante.
- Carga estática a tracción o compresión: Carga máxima admisible con el actuador parado a tracción o compresión. En general el valor máximo a compresión es mayor que el de tracción por la mayor resistencia mecánica de la carcasa a este tipo de esfuerzo. La carga máxima a compresión está condicionada por la longitud de la carrera (ver gráfico pág. 12 y 13).
- Relación de reducción: es la relación interna de reducción de la transmisión entre el motor eléctrico y el husillo de movimiento lineal.
- Carrera lineal para una vuelta del eje de entrada: indica la carrera efectiva lineal en mm realizada por el vástago por vuelta del eje de entrada. Esta información es útil cuando el actuador lleva incorporado un enconder sobre el eje entrada para calcular los impulsos necesarios para cada unidad lineal de carrera.

Ejemplo: Encoder 100 impulsos por vuelta de entrada.

Carrera por vuelta de entrada 0,25 mm.

De lo que se deduce que son necesarios 400 impulsos por 1 mm carrera.

• **Peso**: peso en kgs. Referido a un actuador con una carrera de 100 mm sin motor. El peso total de un actuador puede ser estimado tomando el peso con carrera 100 mm, añadiendo el peso de cada 100 mm de carrera.

CARACTERÍSTICAS DE LOS ACTUADORES CON HUSILLO TRAPECIAL.

- **Husillo trapecial de una entrada:** Se indica el diámetro exterior del husillo y el paso del filete trapecial. El paso indica el avance o carrera en mm del actuador por vuelta del husillo trapecial es decir por vuelta de la corona conducida del reductor de la transmisión de entrada.
- Husillo trapecial de dos entradas: Se indica el diámetro exterior del husillo y el paso del filete trapecial. El paso efectivo indica el avance o carrera en mm del actuador por vuelta del husillo trapecial. El valor indicado entre paréntesis es el paso entre dos filetes contiguos

CARACTERÍSTICAS DE LOS ACTUADORES CON HUSILLO DE BOLAS.

- **Diámetro por paso**: es el diámetro exterior del husillo y el paso del filete.
- Carga dinámica C: es la carga máxima de funcionamiento admitida por la tuerca, valor de referencia para el cálculo de su vida.
- Carga estática Co: es la carga máxima admitida por la tuerca a compresión o a tracción.

Los valores de las cargas máximas admitidas por la tuerca de bolas son la referencia para el cálculo de vida de la misma. No se debe considerar como prestaciones del actuador porque estas vienen limitadas por la potencia del motor o la resistencia de otros componentes mecánicos del actuador.

• Nº de canales de recirculación de bolas: indica el nº de vueltas completas bajo carga en el cual las bolas circulan.

ACTUADORES LINEALES CON HUSILLO TRAPECIAL serie TMA

CARACTERÍSTIC		ΙΑÑΟ	TM	A 15	TMA 25	TMA 50	TMA	A 100	TMA	A 150	TM	A 200	
Capacidad de carga		[KN]		15	25	50	100		150		200		
<u> </u>	(a traction y compresion)												
Husillo trapecial Diámetro de eje			Tr 22x5		Tr 30x6	Tr 40x7		55x9	Tr 60x12		Tr 80x12		
sólido		[mm]	1	10	14	19	2	24	24		2	28	
Tamaño de la bri (Brida + eje hue			63	B14	63B14	71B14	80)B5	80)B5	90	OB5	
Tamaño de la bri (campana + acop					71B14	80B14 90B14		B14 12B14		90B14 100-112B14		12B14	
	Rápida	RV	1:4	(4:16)	1:5 (4:20)	1:6 (4:24)	1:7	(4:28)	1:7	(4:28)	1:8	(4:32)	
Relación de reducción	Normal	RN	1:16	(2:32)	1:20	1:18 (2:36)	1:14	(2:28)	1:14	(2:28)	1	:24	
(Velocidad)	Lenta	RL	1:	24	1:25	1:24	1:	:28	1:	:28	1	:32	
	Extra lenta	RXL	1:	:34	1:48	1:44	1:	:40	1:	:40	-		
		RV1	1.	.25	1.2	1.17	1.	.29	1.	.71	1	1.5	
Carrera lineal po eje de entrada. [r		RN1	0.	.31	0.3	0.39	0	.64	0.86		C).5	
(Husillo trapecia		RL1	0.21		0.24	0.29	0	.32	0.43		0.38		
			0.15		0.13	0.16	0	.23	0.3				
RV		RV1	0.26		0.24	0.21	0	.20	0.24		0	.21	
Eficacia inicial	RN		0.20		0.16	0.16	0	.17	0.20		0.14		
Elicacia illiciai		RL1	0.16		0.15	0.14	0	.13	0.15		0	.13	
100		RXL1	0.13		0.11	0.11	0.12 0.14		.14	ı			
		RV1	0.	.41	0.40	0.37	0	.37 0.42		.42	0	.39	
Relación de efici Funcionamiento		RN1	0.	.31	0.27	0.28	0	.32	0.36		0	.29	
	•	RL1	0.	.27	0.26	0.25	0.25 0.29		.29	0	.27		
		RXL1	0.23		0.21	0.21	0	.22	0.	.26	i		
		RV1	1	12	20	44	1	02	174		2	30	
Par de arranque	en el eje de	RN1	3	3.7	7.5	19	6	61	1	05	1	10	
entrada a máx. c	arga [Nm]	RL1	3	3.1	6.3	17	4	10	7	70	Ç	91	
		RXL1	2	2.8	4.7	12		30	ţ	53	-		
Par relativo en el trapecial a carga			3	30	65	165	460		800		12	200	
Peso del actuado trapecial		KG		8	13	26	43		70		141		
Peso de husillo t 100mm	rapecial cada	KG	0).5	0.8	1.5	2	2.5		3	1	0.5	

ACTUADORES LINEALES CON HUSILLO TRAPECIAL serie ILA. A

TAMAÑO		ILA 15 A	ILA 25 A	ILA 50 A	ILA 100 A	ILA 150 A	ILA 200 A
Capacidad de carga (a tracción y compresión)	[kN]	15	25	50	100	150	200
Diámetro de tubo de empuje	[mm]	40	50	60	80	90	110
Diámetro del tubo de protección [[mm]	60	70	90	130	150	180
Diámetro del terminal delanteros [[mm]	20	30	35	40	45	50
Diámetro ejes de soporte trasero	[mm]	20	30	35	40	45	50
Diámetro máximo del eje macizo de entrada	[mm]	12	16	24	32	38	42
Husillo trapecial de 1 entrada (código: 1)		Tr 22×5	Tr 30×6	Tr 40×7	Tr 55×9	Tr 60×12	Tr 80×12
Carrera lineal por vuelta de eje de entrada	[mm]	5	6	7	9	12	12
Eficacia inicial		0.38	0.35	0.31	0.30	0.35	0.28
Eficacia en funcionamiento a 100 rpm		0.45	0.42	0.42	0.42	0.47	0.41
Par requerido en eje de entrada a carga Max.	[Nm]	32	69	180	478	819	1 706
Husillo trapecial de 2 entradas (código: 2)		Tr 22×10 (P5)	Tr 30×12 (P6)	Tr 40×14 (P7)	Tr 55×18 (P9)	Tr 60×24 (P12)	Tr 80×24 (P12)
Carera lineal por vuelta de eje de entrada	[mm]	10	12	14	18	24	24
Eficacia inicial		0.54	0.51	0.47	0.46	0.51	0.43
Eficacia en funcionamiento a 100 rpm		0.61	0.59	0.58	0.58	0.63	0.58
Par relativo en terminal a carga max.	[Nm]	45	94	237	562	1 124	2 222
Peso (actuador con carrera 100 mm, con lubricante)	[kg]	10	17	37	74	103	144
Peso extra por cada 100 mm de carrera	[kg]	0.9	2	3	6	7.5	12

ACTUADORES LINEALES CON HUSILLO DE BOLAS serie ILA. B

TAMAÑO		ILA 15 B	ILA 25 B	ILA 50 B	ILA 100 B	ILA 150 B	ILA 200 B
Capacidad de c	arga						
(tracción y com	presión) [KN]	15	25	50	100	150	200
Diámetro de tubo	40	50	60	80	90	110	
Diámetro del tul	oo de protección [mm]	60	70	90	130	150	180
Diámetro del ter	minal delantero [mm]	20	30	35	40	45	50
Diámetro de eje trasero	s de soporte [mm]	20	30	35	40	45	50
Diámetro máxin entrada	no del eje macizo de [mm]	16	16	24	32	38	42
	Diámetro × Paso	25×6	32×10	40×10	50x10	63×10	80 ×16
	Bola [mm]	3.969 (5/32 ")	6.35 (1/4 ")	6.35 (1/4 ")	7.144 (9/32 ")	7.144 (9/32 ")	9.525 (3/8 ")
Husillo de Bolas	Nº de circuitos	3	4	5	5	6	5
(código: 1)	Carga dinámica Ca [N]	17 400	41 800	60 000	83.000	112 000	149 000
	Carga estática C _{Oa} [N]	30 500	73 000	124 000	188.000	313 000	393 000
Carrera lineal po	r vuelta de eje de entrada	6	10	10	10	10	16
Par requerido er Max.	eje de entrada a carga [Nm]	16	45	89	177	266	442
	Diámetro × Paso	25×10	32×20	40×20	50x20	63×20	80 ×20
	Bola [mm]	3.969 (5/32 ")	6.35 (1/4 ")	6.35 (1/4 ")	7.144 (9/32 ")	9.525 (3/8 ")	12.7 (1/2 ")
Husillo de bolas	Nº de canales de bolas	3	3	3	4	4	4
(código: 2)	Carga dinámica C _a [N]	14 000	32 200	38 500	65.000	101 000	213 000
	Carga estática C _{Oa} [N]	25 700	53 000	74 000	140.000	220 000	516 000
Carrera lineal po	r vuelta de eje de entrada	10	20	20	20	20	20
Par requerido en eje de entrada a carga Max. [Nm]		27	90	177	354	531	885
Peso (actuador con 100 mm de carrera, sin motor, con lubricante) [kg]		10	18	36	72	107	146
Peso extra por o carrera	cada 100 de [kg]	0.9	2	3	6	6	12

5.- SELECCIÓN DEL ACTUADOR

Los actuadores lineales mecánicos transforman el movimiento de rotación en uno lineal. Esta transformación provoca una pérdida de potencia entre el husillo y la tuerca. Está perdida de potencia es mayor o menor según se trate de un husillo trapecial de una o dos entradas o de un husillo de bolas. Por lo tanto, para la correcta selección del actuador y según la aplicación debemos tener en cuenta, el ciclo de trabajo o más exactamente el factor de utilización solicitado en función de las condiciones de trabajo de la aplicación, y contrastarlo con el factor de intermitencia admitido por el actuador.

Se define factor de utilización sobre 10 minutos Fu (%) solicitado por la aplicación, la expresión en porcentaje del cociente entre el tiempo de trabajo efectivo bajo carga en el tiempo de referencia de 10 minutos y el periodo de referencia mismo.

Se define como factor de intermitencia Fi (%) admitido por el actuador a la expresión que representa el porcentaje de tiempo referida a 10 minutos, durante la cual el actuador puede trabajar en condiciones de carga máxima indicadas en catalogo y con una temperatura ambiente de 25°C sin que aparezcan problemas debidos al calentamiento de los componentes internos.

Resulta por tanto que la limitación de empleo de los actuadores puede ser debida a la potencia térmica admitida y no a la potencia mecánica máxima.

Se recomienda y aconseja para una correcta selección del actuador lineal que se sigan los criterios que a continuación se relacionan:

COMO SELECCIONAR UN ACTUADOR LINEAL

1. Calculo del factor de utilización Fu (%)

Relacionar las prestaciones y características técnicas de la aplicación:

- 1.1 Velocidad lineal.
- 1.2 Tipo de carga a tracción o compresión.
- 1.3 Ciclo de funcionamiento.
- 1.4 Carrera.
- 1.5 Tipo de motor necesario.

2º Seleccionar la serie del actuador.

Calcular el factor de utilización Fu (%) sobre 10 minutos.

2.1 Fu \leq 30% Seleccionamos actuadores con husillo trapecial.

2.2 Fu \geq 50% Seleccionamos actuadores a bolas .

2.3 30% < Fu < 50% Se dan dos posibilidades:

- Seleccionar por precaución serie a bolas.
- Seleccionar de la serie husillo trapecial, previa comprobación de la carga admisible en función de un factor de utilización mayor de 30%. Ver el gráfico carga-factor de utilización de la pag.15.

En general la serie de bolas tiene un costo superior a la equivalente de husillo trapecial, mientras que la selección de la serie de husillo trapecial, con Fu > 30% comporta un aprovechamiento de las prestaciones máximas, con la necesidad de seleccionar tamaños mayores.

La serie de bolas necesita un motor freno para sostener la carga durante la pausa. El motor freno es de todas formas necesario cuando se desea una precisión de parada o repetibilidad sea con husillo de bolas o trapecial.

La obligación de utilizar motor freno es aún mayor cuando la velocidad lineal es elevada.

Por lo tanto en estas condiciones la selección del actuador va ligada no solamente a cuestiones técnicas sino también económicas.

CRITERIOS DE SELECCIÓN

3º Selección del tamaño en 1ª aproximación

Utilizar el gráfico de la pag. 14 para la selección del tamaño del actuador en primera aproximación conociendo la carga y velocidad requerida por la aplicación.

4º Verificación mecánica.

Efectuar las siguientes verificaciones mecánicas con el tamaño preseleccionado:

- 4.1 Verificar la resistencia mecánica a flexión con carga en empuje. La verificación debe llevarse a cabo con carga a compresión y carrera extendida, utilizando el gráfico de la pag.15,16 y 17.
- 4.2 Verificación del ciclo de vida.
- Actuador con husillo trapecial.

Las prestaciones indicadas en catalogo son las máximas admisibles considerando un ciclo de trabajo máximo de Fi=30% en un periodo de 10 minutos, con temperatura ambiente de 25 °C. La vida se ve fuertemente afectada además de por la carga, por la velocidad lineal, por la temperatura ambiente y por el factor de utilización. Para una selección más precisa consultar al departamento técnico de COTRANSA.

Actuador de bolas.

Las prestaciones indicadas en catalogo son las máximas admisibles considerando un ciclo de trabajo máximo del 100%, con temperatura ambiente de 25 °C, y vida mínima L_{10h}=1000 horas. Para necesidades de vida distintas a las indicadas consultar al departamento técnico de COTRANSA. Carga - Velocidad para varios niveles de vida en horas.

5º Selección definitiva del tamaño.

Con el tipo de motor solicitado, la serie y el tamaño seleccionados, verificar en la tabla de prestaciones la velocidad que admite las prestaciones de carga y velocidad deseadas.

Nos quedaremos con las prestaciones más próximas a las solicitadas. Modificar si es necesario el tamaño para satisfacer plenamente las prestaciones solicitadas.

6º Confirmación de la selección.

Con las prestaciones definitivas, carga y velocidad en base al principio de funcionamiento, calcular el factor de utilización real.

Verificar que el factor de utilización sea inferior o igual al ciclo de trabajo admitido por el actuador preseleccionado. Fu ≤ Fi.

En caso contrario repetir la selección desde el punto nº 2.

7º Selección de los accesorios.

- 7.1 terminal del vástago.
- 7.2 dispositivo final de carrera.
- 7.3 tipo de ejecución.
- 7.4 otros accesorios.

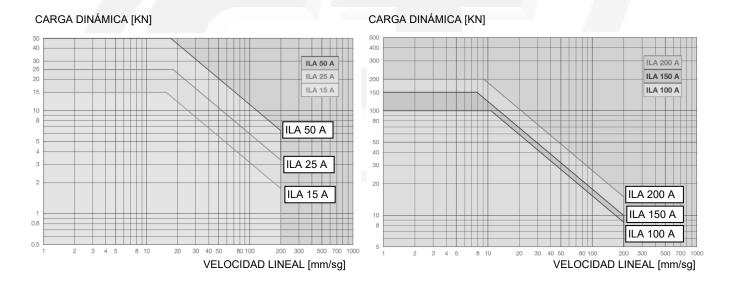
8º Dimensiones del actuador y accesorios de fijación.

Consultar la tabla de dimensiones para conocer las medidas de fijación del actuador y de sus accesorios y verificar que son compatibles con la aplicación.

9º Codificación del pedido.

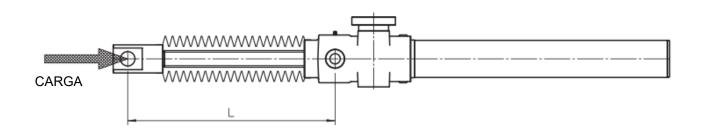
Ver ejemplo de la pag. Pag.18.

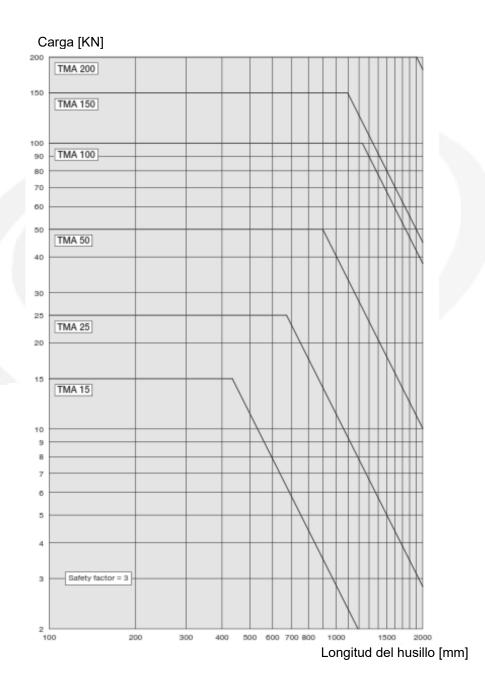
GRÁFICOS DE SELECCIÓN DE LOS ACTUADORES

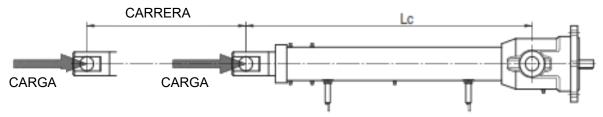

SERIE TMA

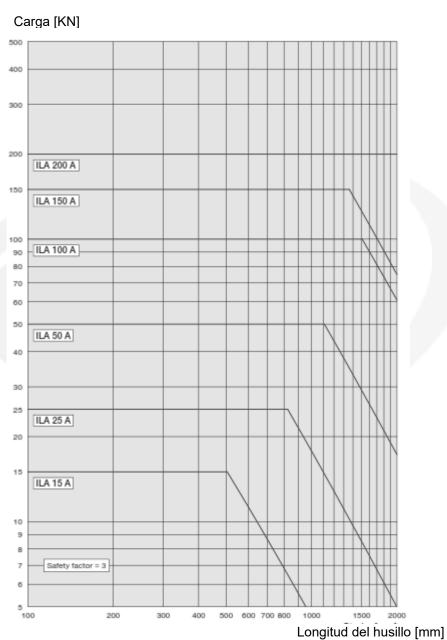
SERIE ILA

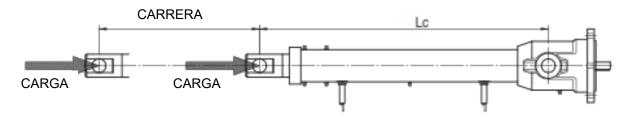
ILA 15 A ... ILA 50 A

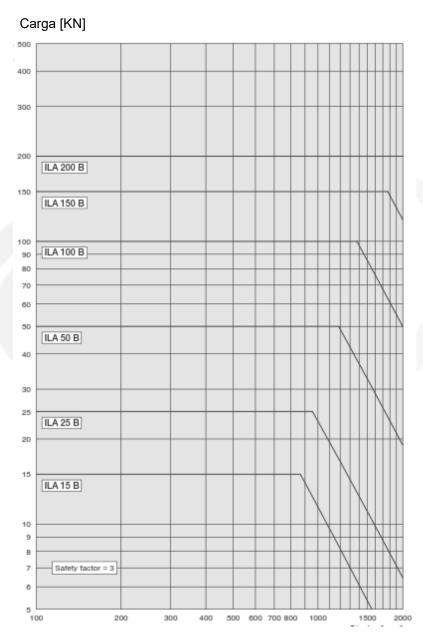

ILA 100 A ... ILA 200 A




6. - RESISTENCIA AL PANDEO BAJO CARGA DE EMPUJE - DIAGRAMAS DE EULER II


Actuadores lineales de husillo trapecial Serie TMA


Actuadores lineales de husillo trapecial Serie ILA. A



Actuadores lineales de husillo de bolas Serie ILA. B

Longitud del husillo [mm]

7.- CODIFICACIÓN

<u>TMA</u>	<u>50</u>	Config.			RL1	<u>C800</u>	<u>TF</u>	<u>B</u>		<u>FC</u>
<u>ILA</u>	<u>25</u>		<u>A</u>	Tr30x6		C400	<u>TS</u>		<u>SP</u>	<u>FCP</u>
1	2	3	4	5	6	7	8	9	10	11

Vers 3	Entrada motorreductor	0,37 Kw 4 POLOS 230/400V 50Hz IP55				
	Entrada motorreductor	1,5 Kw 4 POLOS 230/400V 50Hz IP55				
12	13	14				

1. Series de actuadores TMA /ILA

2. Tamaño TMA / ILA 15, 25, 50, 100, 150, 200

3. configuración actuador TMA: Config. 1 Config,8 ILA: A- Husillo trapecial 4. Tipo de husillo B- Husillo de bolas

5. Tamaño husillo ILA

6. Relación interna TMA: RV1, RN1, RL1, RXL1

7. Carrera TF, TS 8. Amarre frontal Fuelle TMA 9.

Soporte posterior ILA: (sin código) Ejes solidos 10. SP Soporte posterior

FC Dispositivo final de carrera Interruptor eléctrico

FCP Detector de proximidad inductivo Un eie de entrada 12. Versiones de entrada TMA: Vers. 1

Doble eje de entrada Vers. 2

Vers. 3 Brida motor Vers. 4 Brida motor + 2º eje Vers. 5 Campana + acoplamiento

Vers. 6 Campana + acoplamiento + 2º eje

13. Entrada motorreductor

14. Datos del motor

15. Otras especificaciones

MOTOR

Corriente alterna trifásico AC 14. Motor eléctrico Corriente alterna monofásico AC

Corriente continua CC 14.A Potencia y número de polos

2 polos 4 polos

Trifásico estándar 230 / 400 V 14.B Tensión 50Hz

> 230 V 50Hz Monofásico

Corriente continua 24 V, 12 V

14.C Protección IP 55 Estándar para motor sin freno monofásicos o trifásicos

IP 54 Estándar para motores AC con freno y motores CC

Bajo pedido clases especiales de protección y de Aislamiento

aislamiento

Directamente cableado o cableado independiente 14.D Motor freno

14.E Posición de la caja de bornas Estándar W

N, S, E Bajo pedido

9.- ÍNDICE DE IRREVERSIBILIDAD

Un actuador es irreversible cuando:

- Aplicando una carga a tracción o compresión estando el actuador en posición de parada, el actuador no comienza a moverse. (índice de irreversibilidad estático)
- Al desconectar el motor eléctrico de un actuador en movimiento, este se detiene incluso si se le somete a una carga tanto a tracción como a compresión. (índice de irreversibilidad dinámico)

Las condiciones de reversibilidad y de irreversibilidad se definen en las siguientes cuatro situaciones:

1. IRREVERSIBILIDAD ESTÁTICA:

Estando el actuador en posición de parada y sin vibraciones: Al aplicar una fuerza a tracción o a compresión (hasta el límite de carga admisible) el actuador no comienza a moverse.

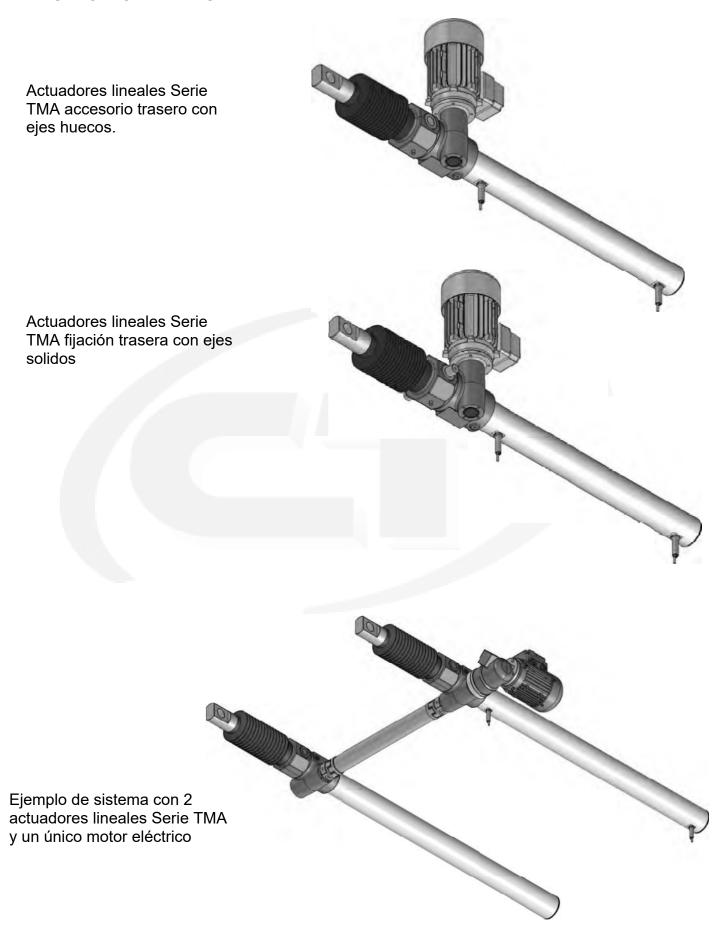
Estas condiciones de irreversibilidad se corresponden con un índice de irreversibilidad inferior a 0,35

2. IRREVERSIBILIDAD DINÁMICA:

- a) Si a un actuador en movimiento con una carga aplicada en oposición al mismo se le desconecta el motor y el actuador se detiene, se dice que es irreversible.
- b) Si un actuador en movimiento puede con una carga aplicada en la misma dirección y se le desconecta el motor, no se garantiza que el actuador se detenga. El actuador se detendrá solo si el coeficiente de irreversibilidad es inferior a 0,25, y en cualquier caso no se detiene siempre en la misma posición. En este caso se recomienda utilizar motor freno para detener el actuador y bloquearlo en la posición deseada, evitando que comience a moverse en caso de vibraciones o tensiones en la carga.


3. IRREVERSIBILIDAD INESTABLE:

Con índices de irreversibilidad situados entre 0,35 y 0,55 los actuadores entran en la zona de irreversibilidad incierta. Aumentando la carga aplicada el actuador puede empezar a moverse.


En estos casos recomendamos utilizar un motor freno para asegurar el bloqueo del actuador o contactar con nuestros técnicos, para analizar la aplicación.

4. REVERSIBILIDAD:

Con índices de irreversibilidad superiores a 0,55 el actuador es siempre reversible. Incluso los actuadores reversibles necesitan de una fuerza pequeña para forzar el arranque del actuador. Esta pequeña fuerza será analizada y dada por nuestros técnicos.

ACTUADORES LINEALES TMA

10.- PROGRAMA DE FABRICACIÓN serie TMA

CARACTERÍSTICAS HUSILLO TRAPECIAL (Actuador sin reductor de entrada) CON MOTOR C.A. TRIFÁSICO

PRESTACIÓN con: Factor de utilización Fi = 30% cada 10 min. a 25 °C Temp. Ambiente

VELOCIDAD LINEAL [mm/s]	CARGA DINÁMICA [KN]	RELACIÓN	MOTOR: POTENCIA [kW] — N° de POLOS [rpm]	ÍNDICE DE IRREVERSIBILIDAD							
	TMA 15										
29	2.6 1)	RV1	0,18 KW 4 polos 1400	0.26							
7.3	7.7 1)	RN1	0,18 KW 4 polos 1400	0.20							
4.9	10 1)	RL1	0,18 KW 4 polos 1400	0.16							
3.4	12.2 1)	RXL1	0,18 KW 4 polos 1400	0.13							
		TM	A 25								
28	5.4 1)	RV1	0,37 KW 4 polos 1400	0.24							
7	14.4 1)	RN1	0,37 KW 4 polos 1400	0.16							
5.6	17,5 1)	RL1	0,37 KW 4 polos 1400	0.15							
2.9	25 2)	RXL1	0,37 KW 4 polos 1400	0.11							
	TMA 50										
27	20,6 1)	RV1	1,5 KW 4 polos 1400	0.21							
9	46,8 1)	RN1	1,5 KW 4 polos 1400	0.16							
6.8	50 2)	RL1	1,5 KW 4 polos 1400	0.14							
3.7	50 2)	RXL1	1,5 KW 4 polos 1400	0.11							
		TMA	\ 100								
30	37,2 1)	RV1	3 KW 4 polos 1400	0.20							
15	63 1)	RN1	3 KW 4 polos 1400	0.17							
7.5	100 2)	RL1	3 KW 4 polos 1400	0.13							
5.3	100 2)	RXL1	3 KW 4 polos 1400	0.12							
		TMA	\ 150								
40	42 1)	RV1	4 KW 4 polos 1400	0.24							
20	72 1)	RN1	4 KW 4 polos 1400	0.20							
10	115 1)	RL1	4 KW 4 polos 1400	0.15							
7	147 1)	RXL1	4 KW 4 polos 1400	0.14							
		TMA	A 200								
35	₅₈ 1)	RV1	5,2 KW 4 polos 1400	0.21							
12	130 1)	RN1	5,2 KW 4 polos 1400	0.14							
8.8	159 1)	RL1	5,2 KW 4 polos 1400	0.13							

Nota: Se pueden lograr velocidades lineales más bajas con motores eléctricos trifásicos de 6 polos.

dónde:

- η1 eficiencia dinámica del engranaje helicoidal, calculada de acuerdo a BS 721: Parte 2: 1983
- η2 Eficacia dinámica del husillo trapecial-tuerca de bronce, calculado con referencia a la velocidad
- η 3 = 0.9 Eficacia de rodamientos y elementos de sellado .
 - 2) valor limitado por la capacidad de carga del actuador lineal

¹⁾ valor limitado por la potencia del motor eléctrico La eficiencia dinámica total (η) de los actuadores de la serie TMA sin accionamiento de entrada, utilizada para determinar la CARGA DINÁMICA, se calcula de la siguiente manera: $\eta = \eta 1 \times \eta 2 \times \eta 3$

CARACTERÍSTICAS HUSILLO TRAPECIAL (Actuador con reductor de entrada) CON MOTOR C.A. TRIFÁSICO

PRESTACIÓN con: Factor de utilización Fi = 30% cada 10 min. a 25 °C Temp. Ambiente

VELOCIDAD LINEAL [mm/s]	CARGA DINÁMICA [KN]	RELACIÓN	REDUCTOR DE ENTRADA: Distancia al centro y relación	MOTOR: POTENCIA [kW] — N° de POLOS [rpm]	ÍNDICE DE IRREVERSIBILIDAD					
	TMA 15									
2.3	g 1)	RN1	125 R 6,25	0,12 kW 2 polos 2800	0.14					
1.2	15 2)	RN1	I 25 R 12,5	0,12 KW 2 polos 2800	0.14					
0.39	15 2)	RL1	I 25 R 12,5	0,09 kW 4 polos 1400	0.10					
0.14	15 2)	RXL1	125 R 25	0,09 kW 4 polos 1400	0.06					
			TMA 25							
1.8	20 1)	RN1	130 R4	0,18 kW 4 polos 1400	0.09					
0.88	25 2)	RN1	130 R 16	0,25 kW 2 polos 2800	0.09					
0.45	25 2)	RL1	125 R 12,5	0,09 kW 4 polos 1400	0.10					
0.12	25 2)	RXL1	125 R 25	0,09 kW 4 polos 1400	0.05					
				·						
		T	TMA 50							
1.8	39 1)	RN1	140 R5	0,37 kW 4 polos 1400	0.10					
0.91	50 2)	RN1	140 R 20	0,55 kW 2 polos 2800	0.08					
0.43	50 2)	RL1	130 R 16	0,18 kW 4 polos 1400	0.08					
0.15	50 2)	RXL1	130 R 24	0,18 kW 4 polos 1400	0.05					
			TMA 100		,					
2	100 2)	RV1	I 63 R 15	1,1 kW 4 polos 1400	0.14					
1	100 2)	RN1	I 50 R 15	0,75 kW 4 polos 1400	0.12					
0.38	100 2)	RL1	140 R 20	0,37 kW 4 polos 1400	0.07					
0.21	100 2)	RXL1	140 R 25	0,37 kW 4 polos 1400	0.06					
			TMA 150							
2	117 1)	RV1	163 R 20	1,1 kW 4 polos 1400	0.14					
1	150 2)	RN1	150 R 20	1,1 kW 4 polos 1400	0.12					
0.5	150 2)	RL1	150 R 20	0,75 KW 4 polos 1400	0.09					
0.13	150 2)	RXL1	140 R 55	0,37 kW 4 polos 1400	0.01					
	, , ,									
			TMA 200							
1.8	162 1)	RV1	163 R 20	1,5 kW 4 polos 1400	0.13					
0.78	200 2)	RN1	I 50 R 15	1,1 kW 4 polos 1400	0.10					
0.13	200 2)	RL1	163 R 70	0,75 KW 4 polos 1400	0.05					

Nota: Se pueden lograr velocidades lineales más bajas con motores eléctricos trifásicos de 6 polos.

dónde:

- η1 eficiencia dinámica del engranaje helicoidal, calculada de acuerdo a BS 721: Parte 2: 1983
- η2 Eficacia dinámica del husillo trapecial-tuerca de bronce, calculado con referencia a la velocidad
- η 3 = 0.9 Eficacia de rodamientos y elementos de sellado .
 - 2) valor limitado por la capacidad de carga del actuador lineal

¹⁾ valor limitado por la potencia del motor eléctrico La eficiencia dinámica total (η) de los actuadores de la serie TMA sin accionamiento de entrada, utilizada para determinar la CARGA DINÁMICA, se calcula de la siguiente manera: $\eta = \eta 1 \text{ x } \eta 2 \text{ x } \eta 3$

11.- DIMENSIONES serie TMA (Actuador sin reductor de entrada)

Eje de entrada perpendicular al terminal delantero y sujeción. entre el eje del eje de (B) Configuraciones con eje de accesorio trasero (A) entrada y el eje de accesorio (C) delantero CAMPANA + ACOPLAMIENTO ØDc IEC B14 BRIDA + EJE HUECO ØDf A A Øu H7 IEC B5 o IEC B14 K14 CARRERA Lc = F14 В La = Lc + CARRERA T14 + CARRERA **(B)** (A) 🛞 (C) Lc: Longitud actuador recogido. La: Longitud actador extendido. **TERMINAL** (Brida **CON AGUJERO** TF 空 r3 Ød22 Ød12 Ød12 Ød21 h7 Ød11 F7 Ød11 F7 8 Ød11 F7 Ø, Ød11 F7 Ød21 h7 Ød12 Ød12 Ød22 EJE HUECO DE SUJECCIÓN EJE HUECO DE SUJECCIÓN **EJES MACIZOS DE SUJECCIÓN** Config.3 Config.2 Config.1 Ød22 Lc = **S14** Ød21 h7 wwwww **TERMINAL ROTULA G**2 TS Øv H7 2 Ød21 h7 Ød22 **EJES MACIZOS DE SUJECCIÓN**

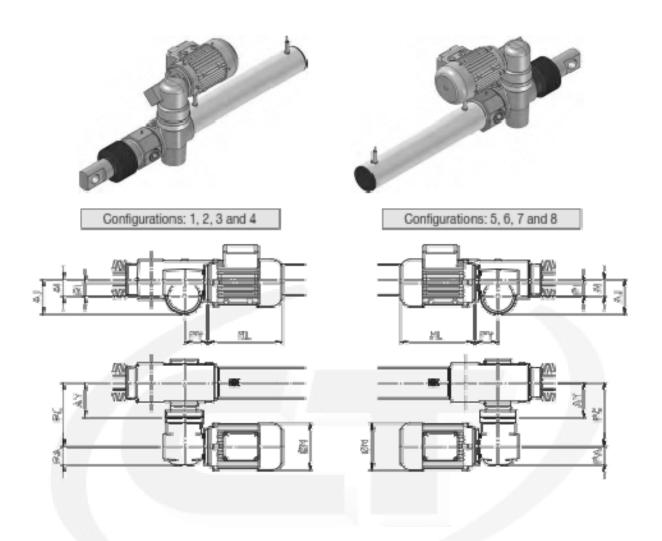
Config.4

Eje de entrada perpendicular a terminal delantero y ejes de montaje Config.1 y Config.2 - eje de montaje entre el eje de entrada y el terminal delantero

	Tr d×P		F14			S14		K14
TMA 15	Tr 22×5	125 ¹⁾	225 ²⁾	325 ³⁾	144 ¹⁾	244 ²⁾	344 ³⁾	240
TMA 25	Tr 30×6	156 ¹⁾	256 ²⁾	356 ³⁾	172 ¹⁾	272 ²⁾	372 ³⁾	259
TMA 50	Tr 40×7	180 ¹⁾	280 ²⁾	380 ³⁾	220 ¹⁾	320 ²⁾	420 ³⁾	304
TMA 100	Tr 55×9	197 ¹⁾	297 ²⁾	397 ³⁾	254 ¹⁾	354 ²⁾	454 ³⁾	332
TMA 150	Tr 60×12	254 ¹⁾	354 ²⁾	454 ³⁾	304 ¹⁾	404 ²⁾	504 ³⁾	404
TMA 200	Tr 80×12	276 ¹⁾	376 ²⁾	476 ³⁾	321 ¹⁾	421 ²⁾	521 ³⁾	525

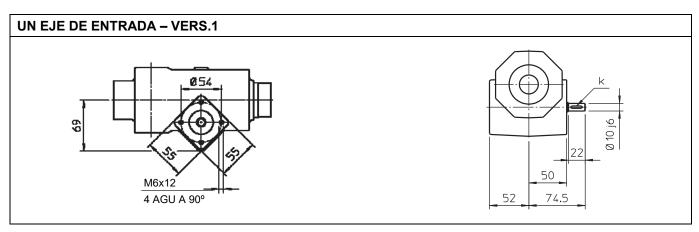
¹⁾ sin fuelles
2) con fuelles y carrera < 600
3) con fuelle y 600 < carrera < 1200
4) con fuelles y carrera > 1200: por favor, póngase en contacto con COTRANSA.

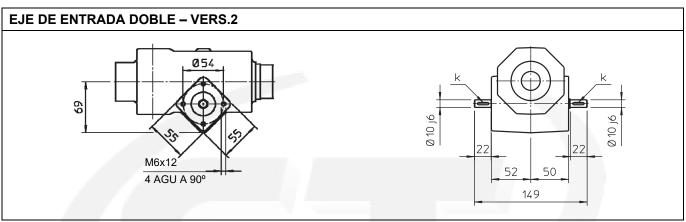
	Α	В	С	Ø D2	Ø D3	Е	I	K14
TMA 15	67	132	50	50	82	88	30	50
TMA 25	77.5	145	57	65	90	96	40	61
TMA 50	93	183	68	90	110	116	50	75
TMA 100	110	219	83	110	140	150	63	77
TMA 150	140	248	83	130	153	168	63	104
TMA 200	200	340	103	160	200	240	80	106


		orio para mo ida + eje hu			Accesori (campana	-		
	Tamaño Ø Df H2		H2	J	Tamaño	Ø Dc	Н3	J1
TMA 15	63 B14	90	75	62	_	-	-	_
TMA 25	63 B14	90	80	69	71 B14	105	93	138
TMA FO	63 B5	140	120	102	80 B14	120	110	182
TMA 50	71 B14 — 71 B5	105 — 160	103 — 130	102	90 B14	140	120	182
TMA 100					90 B14	140	133	200
TIVIA 100	80 B5	200	163	100	100 B14	160	143	220
TMA 450					90 B14	140	133	200
TMA 150	80 B5	200	163	100	100 B14	160	143	220
TMA 200	200 80 B5 200		179	119	100 B14	160	159	240
TMA 200	90 B5	200	179	119	112 B14	100	139	240

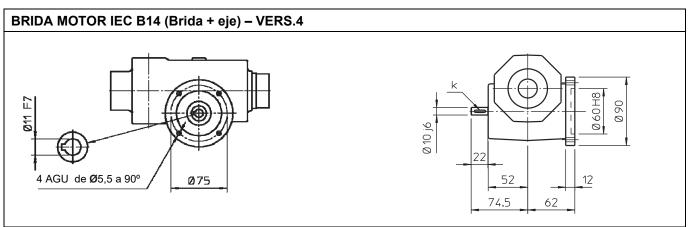
	G1	G2	Ø d11	Ø d12	Ø d22	<i>I</i> 1	<i>l</i> 2
TMA 15	91	92	16	28	28	22	16
TMA 25	100	100	20	35	35	20	20
TMA 50	122	122	25	45	45	25	30
TMA 100	154	154	35	55	55	35	40
TMA 150	176	176	40	60	60	40	40
TMA 200	248	248	50	70	70	60	50

	h	m	Øn	R	r2	r3	s2	s3	Øu	Øv
TMA 15	75	25	38	21	20	20	21	15.5	20	16
TMA 25	100	30	48	27	25	25	16	13	25	20
TMA 50	120	40	68	37	35	35	22	19	35	30
TMA 100	140	50	78	46	40	40	28	23	40	40
TMA 150	180	60	90	56	50	50	35	30	50	50
TMA 200	210	75	108	68	60	60	44	38	60	60

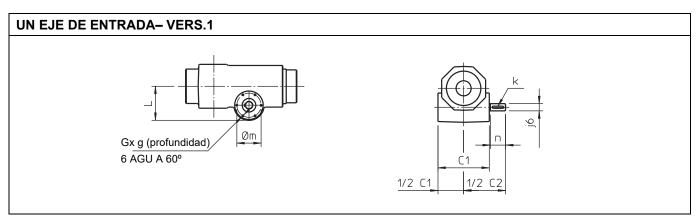


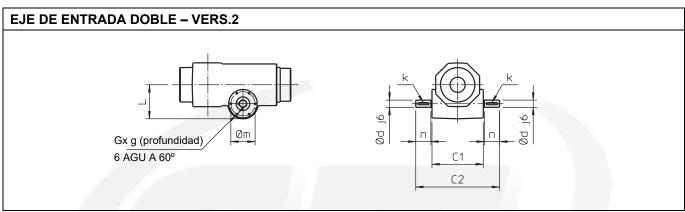

12.- POSICIÓN DE MONTAJE DEL MOTORREDUCTOR _ SERIE TMA

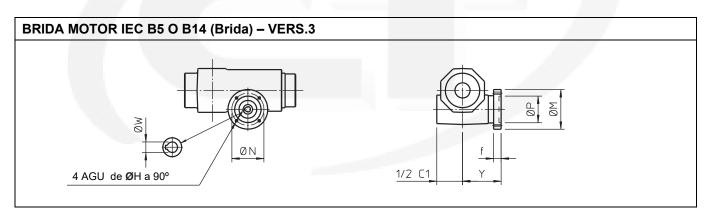


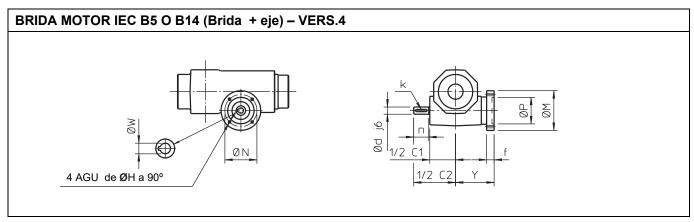

ACTUADOR	ENTRADA REDUCTOR	AI	AJ	AY	PA	PC	PI	PY	Ø M	ML
TMA 15	I 25	30	75	62	44	123	25	58	110	168
TMA 25	I 25	40	85	69	44	130	25	58	110	168
TIVIA 25	1 30	40	85	69	49	142	30	62	123	198
TMA 50	1 30	50	103	102	49	175	30	62	123	198
TIVIA 50	140	50	103	102	54	184	40	69	137	216
TMA 100	I 40	63	123	100	54	182	40	69	137	216

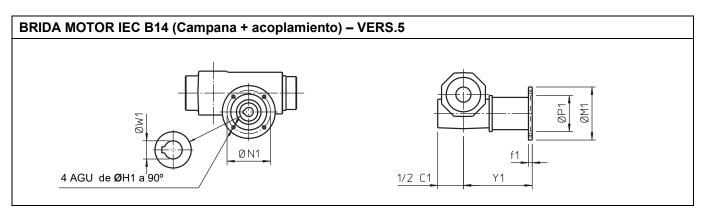
TAMAÑO TMA15

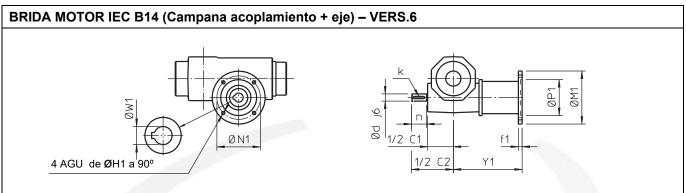









TAMAÑO 25 200



	04	00	_			O d	l.	Ø m	
	C1	C2	G	L	g	Ød	k	Øm	n
TMA 25	114	179	M5	70	12	14	5×5×20	46	30
TMA 50	136	222	M5	90	10	19	6×6×30	64	40
TMA 100	165	269	M6	104	14	24	8×7×40	63	50
TMA 150	165	269	M6	104	14	24	8×7×40	63	50
TMA 200	205	330	M6	143	14	28	8×7×40	74	60

Accesorio para motor electrico IEC: Brida

	Moto	re IEC	Н	ØМ	ØN	ØР	Ø	W	Υ	f
TMA 25	63 B14		Ø 5,5	90	75	60	1	11		8
TMA 50	71	B14	Ø7	105	85	70	14		102	20
TMA 100	80	B5	M10	200	165	130	1	9	100	12
TMA 150	80	B5	M10	200	165	130	19		100	12
TMA 200	80 B5	90 B5	M10	200	165	130	19	24	119	12

Accesorio para motor eléctrico IEC: Campana + acoplamiento

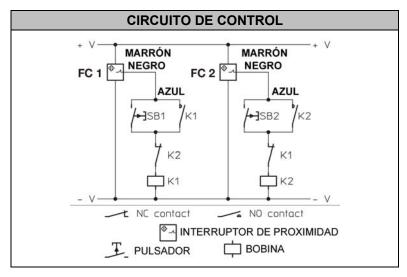
	Motor IEC		Ø	H1	ØI	M1	Ø	N1	Ø	P1	Ø١	W1	Υ	1	f1	
TMA 25	71 B14		6	.5	10)5	8	5	7	0	2	4	13	38	8	
TMA 50	80 B14	90 B14	6.5	8,5	120	140	100	115	80	95	19	24	176	182	10	10
TMA 100	90 B14	100-112 B14	8,5	8,5	140	160	115	130	95	110	24	28	200	220	10	15
TMA 150	90 B14	100-112 B14	8,5	8,5	140	160	115	130	95	110	24	28	200	220	10	15
TMA 200	100 -112 B14		8	,5	16	30	13	30	1	10	2	8	24	10	15	5

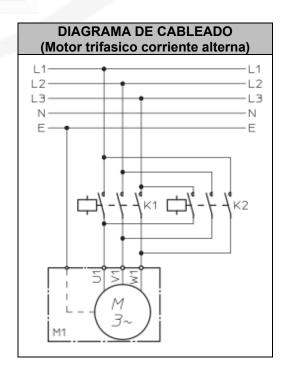
13.- ACCESORIOS TMA

FINALES DE CARRERA DE PROXIMIDAD INDUCTIVOS FCP

Los finales de carrera de proximidad FCP permiten que el actuador se detenga antes cada una de las paradas mecánicas internas evitando daños. También se pueden utilizar para posiciones intermedias a lo largo de la longitud del actuador.

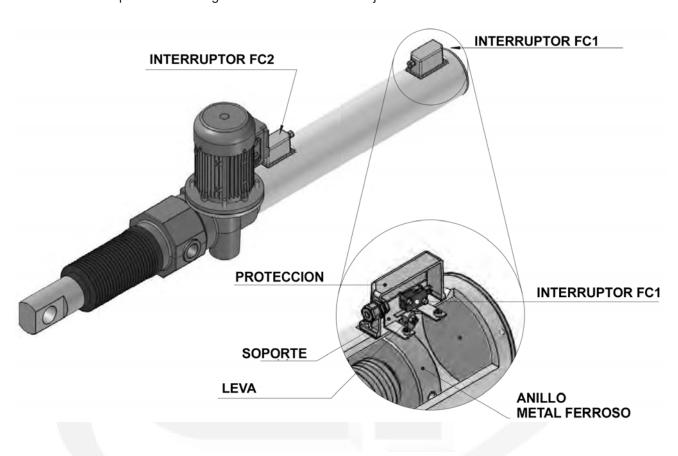
Los finales de carrera de proximidad inductivos se encuentran fijados directamente en el tubo exterior del actuador en la posición requerida y son activados por un anillo metal-ferroso que se coloca en el extremo del husillo trapecial.

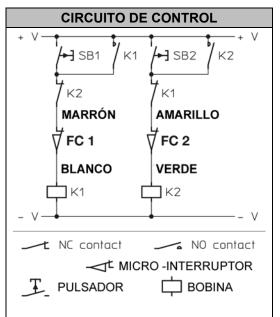

En caso de que el husillo no se detenga después de la activación del sensor, cuando se aleje el anillo metalferroso, el sensor se restaura al estado original (se desactiva). En caso de que los sensores se utilicen para detener el accionamiento, se recomienda una conexión con control eléctrico para prevenir que el actuador siga moviéndose en la misma dirección.



- ACTUADOR RECOGIDO (Lc): sensor FC 1
- ACTUADOR EXTENDIDO (La): sensor FC 2

En la disposición estándar, la posición de los interruptores a lo largo del tubo no es ajustable y no está fijada angularmente. La distancia angular según los requisitos del cliente está disponible bajo pedido. LA disposición con ajuste axial de los sensores también está disponible bajo pedido.


CARACTERÍSTICAS ELÉCTRICAS								
Tipo:	inductivo, PNP							
Contacto:	normalmente CERRADO (NC)							
Tensión:	(10 30) V CC							
Corriente max salida:	200 mA							
Caída de voltaje (interruptor activado)	< 3 V (a 200 mA)							
Cables de conexión:	$3 \times 0.2 \text{ mm}^2$							
Longitud de cable :	2 m							



FINALES DE CARRERA DE ELÉCTRICO FC

Los finales de carrera eléctricos FC permiten limitar la carrera evitando llegar a cada una de las posiciones extremas (paradas mecánicas) y previniendo daños. El dispositivo consta de dos conjuntos de interruptores, cada uno de ellos compuesto por un interruptor eléctrico (FC 1, FC 2) fijado al tubo; cubierto por una protección de aluminio y sellado de goma. Cada conjunto determina una de las dos posiciones extremas del del empuje (Lc o La), pero no se puede utilizar para fijar ninguna posición intermedia. La disposición a lo largo del tubo exterior no es ajustable.

Los finales de carrera eléctrico FC deben estar conectados al control eléctrico para garantizar la parada de motor y evitar dañar el actuador y el equipo utilizado en la aplicación. El esquema de conexiones se encuentra en la página 29.

Los finales de carrera eléctricos FC son suministrados con 2 cables multinúcleo $2 \times 0.75~\text{mm}^2$, longitud estándar 1.5 m, existen bajo pedido longitudes mayores. Los colores para las conexiones se indican en la página de control a la izquierda.

VALORES NOMINALES DE CONTACTO									
Tensión 250 V AC 125 V AC 125 V DC									
Corriente (carga resistente) 16 A 16 A 0,6 A									
Corriente (carga inductiva) 10 A 10 A 0,6 A									

Los finales de carrera eléctrico FC están disponibles para los tamaños TMA 100, 150 y 200.

FUELLE DE PROTECCIÓN B

Cuando los actuadores se utilizan en condiciones ambientales agresivas: polvos, humedad, viruta... que pueden dañar el actuador, resulta muy útil el empleo de fuelles.

Existen bajo pedido fuelles fabricados con materiales especiales para entornos severos.

ENCODER ROTATIVO ENC.4

Hall-effect encoder, incremental, bidireccional

Resolución: 4 pulsos por vuelta

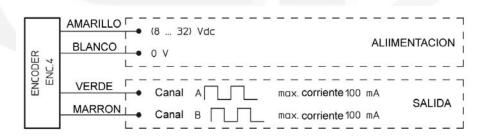
Salida: PUSH-PULL

2 canales (desfase 90°) Tensión de entrada : (8 ... 32) Vcc Corriente máx. conmutable: 100 mA

Tensión max. de salida:

con carga conectada a 0 y I_{salida} = 100 mA: 4.6 V con carga conectada a + V y I_{salida} = 100 mA: 2 V

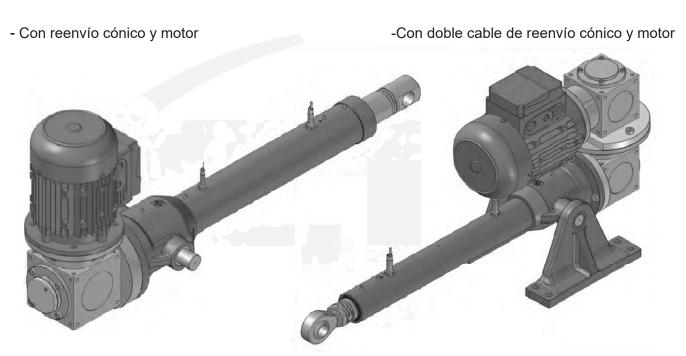
Protección:


contra el circuito corto

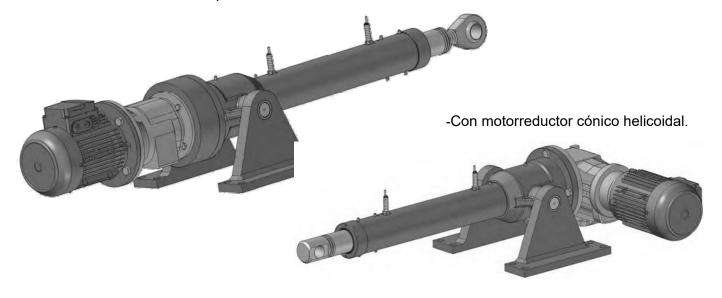
contra la inversión de polaridad de entrada contra cualquier conexión incorrecta de salida

Longitud del cable: 1,3 m

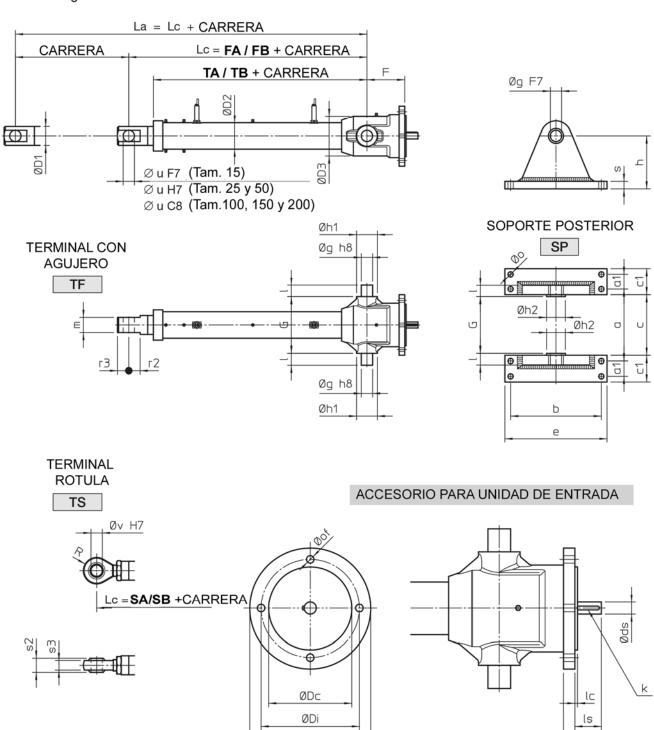
Protección: IP 55



ACTUADORES LINEALES SERIE ILA


Actuador lineal serie ILA sin accionamiento de entrada, con brida y eje de entrada

Actuador lineal serie ILA con accionamiento de entrada


-Con motorreductor coaxial o planetario

14.- DIMENSIONES serie ILA

Lc: Longitud actuador recogido La: Longitud actuador extendido

ØDf

DIMENSIONES SERIE ILA

ILA A

FA SA TA 166 **ILA 15 A** 207 248 ILA 25 A 275 310 210 ILA 50 A 407 282 351 **ILA 100 A** 466 346 436 ILA 150 A 506 376 468 **ILA 200 A** 484 519 377

ILA B

	F	В	S	В	T	В
ILA 15 B	190 208 (BS25×6) (BS25×10)				148 (BS25×6)	166 (BS25×10)
ILA 25 B	3:	30	3	65	26	67
ILA 50 B	371 391 (BS40×10) (BS40×2		427 (BS40×10)	447 (BS40×20)	309 (BS40×10)	329 (BS40×20)
ILA 100 B	436 (BS50×10)					380 (BS50×20)
ILA150 B	484 519 (BS63×10) (BS63×20)		522 557 (BS63×10) (BS63×20		390 (BS63×10)	425 (BS63×20)
ILA 200 B	532 554		567 (BS80×16)	589 (BS80×20)	432 (BS80×16)	454 (BS80×20)

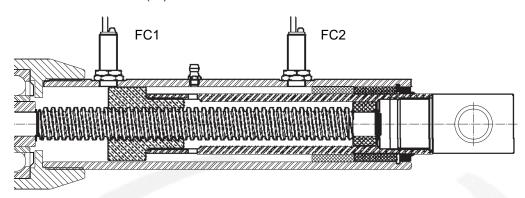
	Ø D1	Ø D2	Ø D3	F	G	а	a1	b	С
ILA 15	40	60	86	78	140	172	26	190	148
ILA 25	50	70	106	98	150	190	40	240	160
ILA 50	60	90	140	114	200	240	50	270	210
ILA 100	80	130	170	147	240	292	60	310	252
ILA 150	90	150	190	149	280	342	75	370	292
ILA 200	115	180	220	150	332	404	100	410	344

	с1	у	Øg	h	Ø h1	Ø h2	I	Ø o (n° de agu.)	s
ILA 15	50	220	20	120	45	35	20	12 (4 agu.)	15
ILA 25	70	270	30	140	55	50	30	14 (4 agu.)	20
ILA 50	80	300	35	160	65	55	35	18 (4 agu.)	20
ILA 100	100	360	40	185	75	60	40	22 (4 agu.)	25
ILA 150	125	425	45	225	75	65	45	26 (4 agu.)	30
ILA 200	160	470	50	250	100	70	50	32 (4 agu.)	35

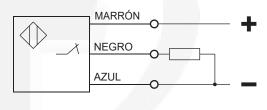
	Ø Df	Ø Di	Ø Dc	Ø ds	k	lc	lf	ls	Ø of (n° de agu.)
ILA 15	140	120	100	16	ILA A: 4×4×25 ILA B: 5×5×25	3.5	17	ILA A: 35 ILA B: 45	8 (4 agu.)
ILA 25	160	140	120	16	5×5×30	3.5	13	40	10 (4 agu.)
ILA 50	200	175	150	24	8×7×35	4	19	55	12.5 (4 agu.)
ILA 100	250	215	180	32	8×10×40	4	25	60	14.5 (4 agu.)
ILA 150	300	265	230	38	10×8×60	4	29	78	14.5 (4 agu.)
ILA 200	350	300	250	42	12×8×60	4	33	110	18.5 (4 agu.)

Dimensiones de terminal

ies de terminar								
	m	R	r2	r3	s2	s3	Øu	Øv
ILA 15	42	25	_	27	25	ILA A: 19 ILA B: 18	20	20
ILA 25	40	35	30	30	37	25	30	30
ILA 50	50	40	30	35	43	28	35	35
ILA 100	60	45	45	55	ILA A: 28 ILA B: 49	ILA A: 23 ILA B: 33	40	40
ILA150	70	51	50	60	32	27	45	45
ILA 200	80	68	60	70	44	38	60	60

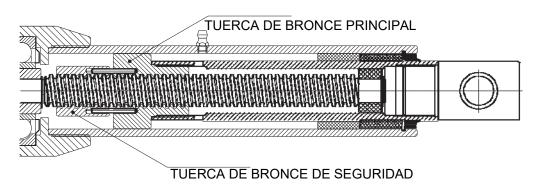

15.- ACCESORIOS

FINAL DE CARRERA DE PROXIMIDAD FCP


Los finales de carrera de proximidad FCP permiten que el actuador se detenga antes de cada uno de los topes mecánicos interiores evitando daños. También se pueden utilizar para fijar posiciones intermedias a lo largo de la carrera del actuador.

Los finales de carrera de proximidad están fijados en el tubo exterior del actuador en la posición requerida. Su posición no es aiustable. Los finales de carrera estándar se suministran normalmente cerrados.

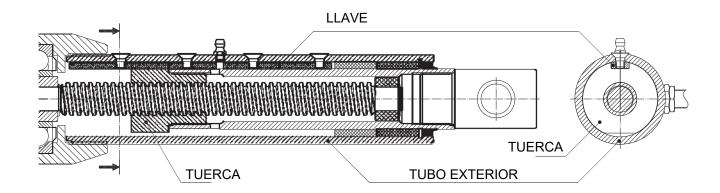
- POSICIÓN CERRADA ACTUADOR (Lc): sensor FC 1
- POSICIÓN EXTENDIDA ACTUADOR (La): sensor FC 2



CARACTERÍSTICA	S ELÉCTRICAS
Tipo:	inductivo, PNP
Contacto:	normalmente CERRADO (NC)
Voltaje:	(10 30) V CC
Corriente max. De salida:	200 mA
Caída de voltaje (interruptor activado)	< 3 V (a 200 mA)
Cables de conexión:	$3 \times 0.2 \text{ mm}^2$
Longitud de cable :	2 m

CABLEADO PARA UN ÚNICO INTERRUPTOR

TUERCA DE SEGURIDAD MS



La tuerca de seguridad es una tuerca auxiliar de bronce conectada mediante 2 pines a la tuerca principal de bronce. La distancia entre las dos tuercas en un actuador nuevo es igual a la mitad del paso del husillo. Si la tuerca principal se desgasta hasta la mitad del paso, la TUERCA DE SEGURIDAD soporta la carga evitando su caída.

La tuerca de seguridad es un dispositivo que se rompe de una sola dirección. Su posición con respecto a la tuerca principal depende de la dirección de la carga. La TUERCA DE SEGURIDAD está disponible para actuadores que trabajan con carga de empuje. Para aplicaciones con carga de tracción está disponible bajo pedido (Diseño especial).

La tuerca de seguridad MS está disponible para todos los actuadores con husillo trapecial (ILA . Serie A).

ANTIRRETORNO AR

Para lograr un movimiento lineal es necesario evitar el movimiento giratorio de la tuerca y del husillo de empuje. En muchas aplicaciones es la propia estructura externa la que, al estar conectada al husillo de empuje, evita la rotación y permite el movimiento lineal.

En algunos casos, la carga aplicada sobre el husillo de empuje no se puede guiar y, por lo tanto, no se puede evitar la rotación. En tales casos es necesario utilizar actuadores con un dispositivo antirretorno interno. El dispositivo antirretorno permite el movimiento lineal sin ninguna reacción externa sobre el husillo. Se puede suministrar bajo pedido.

El dispositivo antirretorno que se muestra en la imagen superior consiste en una chaveta de acero fijada y alineada a lo largo del tubo exterior. La tuerca de bronce, provista de un chavetero adecuado, se desliza sobre esta chaveta, haciendo trasladar el husillo.

El dispositivo antirretorno AR está disponible para todos los actuadores de husillo trapecial (Serie ILA . A).

FUELLE PROTECTOR B

Cuando los actuadores se utilizan en condiciones ambientales severas con agentes contaminantes que pueden dañar el retén entre el tubo exterior exterior y la varilla de empuje, los FUELLES la de protección pueden ser útiles.

Los fuelles fabricados a materiales especiales para ambientes severos están disponibles bajo pedido.

APLICACIÓN DE ACTUADOR LINEAL SERIE TMA: SEGUIDORES SOLARES

DIVISIONES DE PRODUCTOS COTRANSA:

cotransa www.cotransa.net división REDMOT	MOTORREDUCTORES E-mail: luisleon@co	otransa.net CATÁLOGOS
REDUCTORES Y MOTORREI	DUCTORES DE SIN FIN CORONA Serie MAX	CRA
REDUCTORES Y MOTORREI	DUCTORES COAXIALES Serie MAX	CRE
REDUCTORES Y MOTORREI	DUCTORES ORTOGONALES Serie MAX	GO
	DUCTORES PARALELOS Serie MAX	
	DUCTORES Serie ALU	
	DUCTORES SIN FIN CORONA Serie FIT	
	DUCTORES COAXIALES Serie INT	
	DUCTORES COAXIALES Serie WES	
	DUCTORES ORTOGONALES Serie COC	
	DUCTORES PLANETARIOS Serie E	
	DUCTORES PLANETARIOS Serie PLA	
		· · · · · · · · · · · · · · · · · · ·
MOTORES ELECTRICOS – S	ERIE MEB	RM 16
cotransa division PROYET	PROYECTOS DE INGENIERÍA E-mail:	
SISTEMAS DE PERFILES DE	ALUMINIO	PA04
PROTECCIONES DE MAQUIN	NARIA	SL08
TRANSPORTADORES DE BA	NDA Y DE RODILLOS	PA04
RODILLOS MOTORIZADOS Y	' DE MANUTENCIÓN	
cotransa (CT) www.cotransa.net	MECATRÓNICA E-mail: <u>ilgonzalez@cotrar</u>	
división TROMEC GATOS MECÁNICOS	MECATRONICA E-IIIaii. <u>jigonzaiez@cotrai</u>	
GATOS MECÁNICOS		SG12
GATOS MECÁNICOSACTUADORES LINEALES Se	rie ATL/BSA	SG12
GATOS MECÁNICOSACTUADORES LINEALES Se	rie ATL/BSArie UAL/UBA	SG12
GATOS MECÁNICOSACTUADORES LINEALES Sei ACTUADORES LINEALES Sei ACTUADORES LINEALES Sei	rie ATL/BSArie UAL/UBArie COMPACTOS	SG12
GATOS MECÁNICOSACTUADORES LINEALES SE ACTUADORES LINEALES SE ACTUADORES LINEALES SE MESAS DE GIRO Y ANILLOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS	SAS09
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES	SG12
GATOS MECÁNICOSACTUADORES LINEALES SE ACTUADORES LINEALES SE ACTUADORES LINEALES SE MESAS DE GIRO Y ANILLOS INTERMITORES Y OSCILADO UNIDADES LINEALES Familia	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES a PLUS a LIGHT	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES a PLUS a LIGHT	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES PLUS a PLUS LIGHT CO DE PRECISIÓN PASO A PASO	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES a PLUS LIGHT CO DE PRECISIÓN PASO A PASO	SG12
ACTUADORES LINEALES Sei ACTUADORES LINEALES Sei ACTUADORES LINEALES Sei ACTUADORES LINEALES Sei MESAS DE GIRO Y ANILLOS INTERMITORES Y OSCILADO UNIDADES LINEALES Familia UNIDADES LINEALES Familia TRANSPORTADOR MECÁNIO HUSILLOS DE BOLAS	rie ATL/BSA	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES a PLUS A LIGHT CO DE PRECISIÓN PASO A PASO ACCESORIOS MECÁNICOS E-mail: jonsa@	SG12
GATOS MECÁNICOS	rie ATL/BSA	SG12
GATOS MECÁNICOS	rie ATL/BSA rie UAL/UBA rie COMPACTOS INTERMITENTES DRES A PLUS A LIGHT CO DE PRECISIÓN PASO A PASO ACCESORIOS MECÁNICOS E-mail: jonsa@ S UNIVERSALES	SG12
GATOS MECÁNICOS	rie ATL/BSA	SG12

Se ruega que en caso de necesitar alguno de los marcando con una "X" los que sean de su interés y solicitándolos a los Emails indicados. Además, dispone de todos los catálogos en nuestra página web: www.cotransa.net

CT BILBAC

FABRICA, ALMACÉN Y OFICINAS:
POLÍGONO INDUSTRIAL TROBIKA.
C/LANDETA №4
MUNGIA 48100 BIZKAIA - ESPAÑA
TFNO.: +34 94 471 01 02*

FAX: +34 94 471 01 02

E-MAIL: cotransa@cotransa.net

redmot MEXICO

ALMACÉN Y OFICINAS:

CALLE NORTE 59, № 818

C.P.:02300 COL. INDUSTRIAL VALLEJO

DELEGACIÓN AZCAPOTZALCO

MEXICO, DISTRITO FEDERAL

TFNO./FAX: +52 55 5567 2482

Cel.: +52 55 32 23 69 32

E-MAIL: mexico@cotransa.net

EDIFICIO SIMONA AVDA. 17 №19.001 E/190 Y 194 – SIBONEY PLAYA CIUDAD DE LA HABANA - CUBA

TFNO.: +53 7 272 98 88 MÓVIL: +53 5 285 12 90 E-MAIL: cuba@cotransa.net

ALMACÉN Y OFICINAS: C/ 73 # 75-22 BOGOTÁ - COLOMBIA TFNO./FAX: +57 1 4344956 MÓVIL: 310 8151875 E-MAIL: c.cano@cotransa.net